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Abstract The Hausdorff dimensions and packing dimensions of Moran sets in the ( C, s)-homogeneons space

are presented, which generalizes the results of Hua and Rao.
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Supposing that (X, d) is a complete metric space, I C X a compact set with nonempty interior
in X (for convenience, we assume that the diameter of [ is 1). Let {n,} k=1 be a sequence of posi-
tive integers, and | ck,j}lsjsnk a sequence of real numbers. We denote by .#4(1, {n,}, lc¢,, jf )
the collection of Moran sets determined by I, {n,!} and {¢,, j} (for the definition of Moran set, see

ref. [1]). Define s,(k=1) by

k

Il(cjg, + 4 cffnl) =1.

i=1

and let s, = lim infs,, s = lim sups,.
k— o k> o

If X is a Euclidean space, and E€ ./ (I, {n,d, 1 c, j} ), under some special conditions on

the sequences {c, ;|, Hua and Rao separotely obtained the following results:
dimZ = s,, DImE = s*,

where dimE and DimE denote the Hausdorff and packing dimensions respectively. If there is not any
limitation on the sequence { c;, j} , then the above results are not true (see, for example, homoge-

neous Cantor set and partial homogeneous Cantor set in ref. [2]).

On the other hand, if X is a general metric space, although { ¢, j} satisfies the conditions given

inrefs. [1, 3, 4], the above results are not true either {see example 1 in ref. [5]).

In this paper, we assume that X is the ( C, s )-homogeneous space (of course, Euclidean space
R" is (C,, n)-homogeneous for some C,. For the definition of ( C, s )-homogeneous space, see ref.
[6]), and give no limitation on { i, j} . We will determine the Hausdorff and packing dimensions of

Moran sets in X. Our main results are as follows.
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Theorem 1. Let X be the (C, s)-homogeneous space, then for any EE #(1, {n,},

fer, ;1) we haves, - sv < dimE < s..

Theorem 2. Let X be the ( C, s )-homogeneous space, then for any E€ 4 (I, {n, b,

fer ;1) h * < DimE “(1+ n), wherev=1im s Iga, = lim su led, M, =
c,ji), we haves”™ < s 77, where b= AL TPl m, T TP, T

P

max{11,1:0€ Dy} and dy =minfc, ;: 1sj<sm}.

Remark 1. By the above theorems and the conditions given in refs. [1, 3, 4], it is immedi-
ately known that the results in refs. [1, 3, 4] are also true in the case where X is the ( C, s )-homo-
geneous space, hence these results generalize the results in refs. [1, 3, 4] from the Euclidean space

to the (C,s )—homogeneous space.

Remark 2.  The packing dimension of Theorem 2 is defined by the radius-based packing
measure, for the definitions and properties of the radius packing measures and radius packing dimen-

sions, one can refer to reference [7].
1 Proof of Theorem 1
To prove Theorem 1, the following lemmas will be used.

Lemma 116,  Let X be a complete ( C, s )-homogeneous space. Then for any t > s, there

exist a non-degenerate Borel measure ;2 and a constant ¢ =1 such that 0 < ,u(B(x ,r)) < ®, and
p(B(x,ar)) < eA'u(B(x, r)) (1)

forany x€ X, r>0and A=1.

Let A CX. %#°(A) denotes the a-dimensional Hausdorff measure of A. The a-dimensional
Hausdorff measure of A determined by the set .# is defined by

%;(A) = lir?*(i)nf{z U 1*: AC UU;, U; € Fand | U; | < é‘},

where #is defined in reference [1].

Lemma 2. Let X be the ( C,s)-homogeneous space, E€ /4 (1,{n,}, 1 ck,j}). Then for
any 3> vand t > s, there exists a constant p > Q such that

a+ 13

p#P(B) < #°(E) < #(E).

lgd
Proof. The second inequality is obvious. Now, for any 8> lim sup—-lgng , there exists ko >0
k= k

such that for any k > k,,

B> longdk. (2)
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Let { U;},,, be any 0-covering of E, sup{1 U} <min{l [ |: ¢€ Dkof ,and U,V Es @, and let

b,=1U;l. Since In;é @, there exist x € Ie(open set) and & > 0 such that U{(x,e)C In, where

U(x,¢) denotes the open ball with center x and radius e . For any i€ N , set
AU) = LV Lig b, <) L0 ), LN U = 8},
where ¢ * is oBtained by deleting the last letter of 6. Put
D(U;,k) =io € Dy: I, € ACUDI,
A; = U DUy K.

For the given U,, the fact that | I, |0 (k—> o ) implies that there exists k; = kq such that for any
k>ky, D(U;, k) =0; therefore the above union is a finite one. Set

N(U;, k) = #D(U, k).

Then Z N(U,, k) is the finite sum, and the cardinality of A, satisfies # A; < = . By the definition

k= k,
of A;, we know that for any r' and r2€ A, there exists no ¢ such that z' = 2% 5, or 2= ¢! »
o ; therefore the open balls { S, (U(x,e))},en = {U(S, (%), ec,)l,cn are pairwise disjoint,

where ¢, = €1,5, €2,6," " Ch,q, for 6 = (g, ,0;).

On the other hand, for any ¢ > s, there exists a Borel measure y satisfying (1) by Lemma 1.
Let #(B(S,(x), -;—b,e)) be the minimum of { £ (B(S,(x), %ble)) t,ea - Then for any o €

A;, we have

U(S,(x),ec,) CUCS.(x),b; +1 I, |+ xanean(l L i+ec,)) CUS.(x),3+¢e)b). (3)

Using eq. (1) and the definitions of A(U;) and D(U;, k), we have

SN ey S mwed Y 4

k=k, o€ D(U.K k=k o€ DU,k k=k o€ D(U, k&

< 1 > S diu(B( 500, 5be))

#( B( Sf(x)’%bie)) k=k o€ DY, B

< ‘ Z 2 y(B(S,(x),%ec,))

'u( B( Sf(x)’%bﬁ)) kol o€ DD
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4

< X 1 (B(S.(x),(3 +¢)b;))
#(B(S,(x),—z—bie

< c2(6 +2e)le". (4)

Hence

izlla‘a+ﬂt=i}i 2 |Ia'a|lg|ﬂt

121 0€ 4, i=l k=k o€ DU K

sZZ P R/ALED AL

i=1 k=k o€ DU K

ORI AL TRAL

=1 k=k o€ D(U.K)
<c*(6+ 2€)‘e"2 LU 1e.
e=1
Noticing that { A(U;) !}, C.% is a 8-covering of E, and choosing p = ¢*(6 +2¢)% "', we have

H(E)zpH % P(E). Thus, the proof of Lemma 2 is completed.

Corollary 1. Let dim ;& be the Hausdorff dimension of E induced by H# %(E). Then
dimgz(E) - vs < dimE < dim E.

Proof.  The second part of the inequality is obvious. Now let dimE < a. Then #°(E) =0.
From Lemma 2 it follows that

dimzE < a + [,

for any 8> v, and ¢ > s. Since @, 8 and ¢ are arbitrary, we have dimE = dimz £ — vs. So the

proof of Corollary 1 is completed.

Proof of Theorem 1. Using the net measure methods in ref. [3], we have dimzE = s, . By
Corollary 1, the resuli of Theorem 1 can be immediately obtained. This completes the proof of Theo-

rem 1.

Corollary 2.  Let X be the ( C,s)-homogeneous space, and EG,//%(I,{nk},ick,j}). If

I lgd,
Ic-l-rg lg Mk

=0, then dmE =5, .

2 Proof of Theorem 2

Let A C X. The upper box dimension is defined byl"!



No. 11 MORAN SETS IN COMPLETE METRIC SPACE 823

lgN,(A)
A(A) = lim suyp ———,
0 - lgr

where N, (A) is the minimum number of closed balls of diameter r covered A. Denote by Dim (A)

the packing dimension induced by the radius-based packing measure. Then!”!
Dim(A) = inf{supA(4,), A C U A,}.

Let EG%(I,{nkf,{ck,j}), and for any F C E, put

P%(F) =1in;»soup{2 | A 1AL CF A4 N4 = 0,

i¢j,AiﬂF;eﬂ,0<lAil<8},

‘}»(E) =inf{zp??(Fi):E - U Fi}’

Az(E) =infla: P%(E) = 0}.
Lemma 3. Let X be the (C, s)-homogeneous space, EE .#(1,1n,} ,{ck,j}). Then
Az(E) < A(E).
Proof. Similar to the proof of the lemma in ref. [4], we have

. lgM,
Ay(E) = lm}jup T lgr’ (5)

where M, is the maximum number of the sets { U| C.% that are not pairwise overlap and diam( U) €
(£7)
27 )
Let N, be the minimum number of the closed balls of diameters r covered £, and let V;,-**,

Vy be such closed balls. Similarly, suppose that A,,::*, Ay are such sets | U} C .#that are not

I
2"
;) € Dy such that 4; = S,(I), and

pairwise overlap and diam (U) € ( ) . For each A;(j=1,,M,),there exisis o = (5,,",

r
— <<

2

Since In;éﬂ, there exists x € I and ¢ >0 such that U(.x,e)c IB, and S,(U(x,e)) =U(S,

(%),ec,)D U( S.(x) ,%e) . The fact that 4;(3 E % @ implies that 4; must intersect some V,. Let
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¥y be the centers of the closed balls V,, k=1,-, N,. If 4; intersects V,, then A; C B(y,,2r),

and

U(Sa(x),%r) C B(y,,2r).
Put

A(V) = {44, NV, = O],

If A;, A;€A(V,), and i, then there exist o 5  such that S,(I) = A4;, S,(I) = A;. By the
above argument and A4, ffj =@, we have

dist(S,(x),8.(x)) > —;—r. (6)

Since X is (C,s)-homogeneous, the closed ball B(y,,2r) contains at most C ( %) points with

. €
mutual distances at least —r; thus

2

Therefore
4\°
M, < C(—) N,. (7)

From egs. (5) and (7) we have
Az(E) < A(E).

Thus, the proof of Lemma 3 is completed.

Proof of Theorem 2. Let a < s " ; then there exists the infinite number of positive integers k €
N, such that a < s,. Thus >, | I, [ = | I |1* >0. By Lemma 3 we get

s€ D,

A(E) 2 AF(E) = 5", (8)

On the other hand, let a > s ™ : then there exists ky > 0 such that s, < @ for any k > kq. ForO< r
<l.putQ = {6 € D: | I, I< r <| L |}. By the proof of theorem in ref. [4], we have

PN AL ALY (9)

g€ Q
Let k, and k, be the maximum and minimum of the lengths of elements in @ respectively, and

put d, = minfd,: k< k<k,}. From (9) we have CardQ < (dyr)™® 1 11%, and therefore

lg(d,r)2111° lgd
A(E) glim supp——— = ¢ lim supl 1 + £%
- lgr R e
(10)
lgd,
<a|l + lim sup .
o 1gM,

From egs. (8) and (10),
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s" < A(E) < s" (1 + 7).

~=

By Lemma 3.3 in ref. [8] we get

*

s < DimE < s" (1 + 7).

By Lemma 3.3 in ref. (8] we get
Dim(E) = A(E);
thus
s <« Dim(E) < s" (1 + p).

Corollary 3. Let X be the (C, s)-homogeneous space, and EG.%(I,{nki,{ck,j}). If
lgd,

lim——— =0, then DimE = s~ .

—elgM, _,
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