SCIENTIFIC PAPERS

Moran sets in complete metric space *

QU Chengqin (瞿成勤), SU Weiyi (苏维宜) and XU Yong (许 勇)

(Department of Mathematics, Nanjing University, Nanjing 210093, China)

Received December17, 1999; revised February 23, 2000

Abstract The Hausdorff dimensions and packing dimensions of Moran sets in the (C, s)-homogeneous space are presented, which generalizes the results of Hua and Rao.

Keywords: (C, s)-homogeneous space, Moran set, Hausdorff dimension, packing dimension.

Supposing that (X,d) is a complete metric space, $I \subseteq X$ a compact set with nonempty interior in X (for convenience, we assume that the diameter of I is 1). Let $\{n_k\}_{k\geqslant 1}$ be a sequence of positive integers, and $\{c_{k,j}\}_{1\leqslant j\leqslant n_k}$ a sequence of real numbers. We denote by $\mathscr{M}(I, \{n_k\}, \{c_{k,j}\})$ the collection of Moran sets determined by $I, \{n_k\}$ and $\{c_{k,j}\}$ (for the definition of Moran set, see ref. [1]). Define $s_k(k\geqslant 1)$ by

$$\prod_{i=1}^{k} \left(c_{i,n_{1}}^{s_{k}} + \cdots + c_{i,n_{1}}^{s_{k}} \right) = 1.$$

and let $s_* = \lim_{k \to \infty} \inf s_k$, $s^* = \lim_{k \to \infty} \sup s_k$.

If X is a Euclidean space, and $E \in \mathcal{M}(I, \{n_k\}, \{c_{k,j}\})$, under some special conditions on the sequences $\{c_{k,j}\}$, Hua and Rao separately obtained the following results:

$$\dim E = s_*$$
, $\dim E = s^*$,

where dim E and Dim E denote the Hausdorff and packing dimensions respectively. If there is not any limitation on the sequence $\{c_{k,j}\}$, then the above results are not true (see, for example, homogeneous Cantor set and partial homogeneous Cantor set in ref. [2]).

On the other hand, if X is a general metric space, although $\{c_{k,j}\}$ satisfies the conditions given in refs. [1, 3, 4], the above results are not true either (see example 1 in ref. [5]).

In this paper, we assume that X is the (C,s)-homogeneous space (of course, Euclidean space R^n is (C_n,n) -homogeneous for some C_n . For the definition of (C,s)-homogeneous space, see ref. [6]), and give no limitation on $\{c_{k,j}\}$. We will determine the Hausdorff and packing dimensions of Moran sets in X. Our main results are as follows.

^{*} Project supported by the National Climbing Project (Grant No. 92101090).

Theorem 1. Let X be the (C, s)-homogeneous space, then for any $E \in \mathcal{M}(I, \{n_k\}, \{c_{k,j}\})$, we have $s_* - sv \leq \dim E \leq s_*$.

Theorem 2. Let X be the (C, s)-homogeneous space, then for any $E \in \mathcal{M}(I, \{n_k\}, \{c_{k,j}\})$, we have $s^* \leq \text{Dim } E \leq s^*(1+\eta)$, where $v = \limsup_{k \to \infty} \frac{\lg d_k}{\lg M_k}$, $\eta = \limsup_{k \to \infty} \frac{\lg d_k}{\lg M_{k-1}}$, $M_k = \max\{|I_{\sigma}|: \sigma \in D_k\}$ and $d_k = \min\{c_{k,j}: 1 \leq j \leq n_k\}$.

Remark 1. By the above theorems and the conditions given in refs. [1, 3, 4], it is immediately known that the results in refs. [1, 3, 4] are also true in the case where X is the (C, s)-homogeneous space, hence these results generalize the results in refs. [1, 3, 4] from the Euclidean space to the (C, s)-homogeneous space.

Remark 2. The packing dimension of Theorem 2 is defined by the radius-based packing measure, for the definitions and properties of the radius packing measures and radius packing dimensions, one can refer to reference [7].

1 Proof of Theorem 1

To prove Theorem 1, the following lemmas will be used.

Lemma 1^[6]. Let X be a complete (C, s)-homogeneous space. Then for any t > s, there exist a non-degenerate Borel measure μ and a constant $c \ge 1$ such that $0 < \mu(B(x, r)) < \infty$, and

$$\mu(B(x,\lambda r)) \leq c\lambda^{\iota}\mu(B(x, r)) \tag{1}$$

for any $x \in X$, r > 0 and $\lambda \ge 1$.

Let $A \subseteq X$. $\mathscr{H}^{\alpha}(A)$ denotes the α -dimensional Hausdorff measure of A. The α -dimensional Hausdorff measure of A determined by the set \mathscr{F} is defined by

$$\mathscr{H}_{\mathscr{T}}(A) = \liminf_{\delta \to 0} \left\{ \sum \mid U_i \mid^{\alpha} : A \subset \bigcup_i U_i, \ U_i \in \mathscr{F} \text{and} \mid U_i \mid < \delta \right\},$$

where \mathcal{F} is defined in reference [1].

Lemma 2. Let X be the (C, s)-homogeneous space, $E \in \mathcal{M}(I, \{n_k\}, \{c_{k,j}\})$. Then for any $\beta > v$ and t > s, there exists a constant p > 0 such that

$$p\mathcal{H}_{x}^{\alpha+i\beta}(E) \leq \mathcal{H}^{\alpha}(E) \leq \mathcal{H}_{x}^{\alpha}(E).$$

Proof. The second inequality is obvious. Now, for any $\beta > \lim_{k \to \infty} \sup_{k \to \infty} \frac{\lg d_k}{\lg M_k}$, there exists $k_0 > 0$ such that for any $k > k_0$,

$$\beta > \log_{M_k} d_k. \tag{2}$$

Let $\{U_i\}_{i\geqslant 1}$ be any δ -covering of E, $\sup\{|U_i|\} < \min\{|I_\sigma|: \sigma \in D_{k_0}\}$, and $U_i \cap E \neq \emptyset$, and let $b_i = |U_i|$. Since $I \neq \emptyset$, there exist $x \in I$ (open set) and $\varepsilon > 0$ such that $U(x, \varepsilon) \subseteq I$, where $U(x, \varepsilon)$ denotes the open ball with center x and radius ε . For any $i \in N$, set

$$A(U_i) = \{I_{\sigma} : | I_{\sigma}| \leq b_i < | I_{\sigma}^{\cdot} |, I_{\sigma} \cap U_i \neq \emptyset \},$$

where σ^* is obtained by deleting the last letter of σ . Put

$$D(U_i, k) = \{ \sigma \in D_k \colon I_{\sigma} \in A(U_i) \},$$

$$\Delta_i = \bigcup_{k \ge k} D(U_i, k).$$

For the given U_i , the fact that $|I_{\sigma}| \rightarrow 0$ ($k \rightarrow \infty$) implies that there exists $k_1 \ge k_0$ such that for any $k > k_1$, $D(U_i, k) = \emptyset$; therefore the above union is a finite one. Set

$$N(U_i,k) = \# D(U_i, k).$$

Then $\sum_{k=k_0}^\infty N(U_i,\,k)$ is the finite sum, and the cardinality of Δ_i satisfies $\# \Delta_i < \infty$. By the definition of Δ_i , we know that for any τ^1 and $\tau^2 \in \Delta_i$, there exists no σ such that $\tau^1 = \tau^2 * \sigma$, or $\tau^2 = \tau^1 * \sigma$; therefore the open balls $\{S_\sigma(U(x,\varepsilon))\}_{\sigma \in \Delta_i} = \{U(S_\sigma(x), \varepsilon c_\sigma)\}_{\sigma \in \Delta_i}$ are pairwise disjoint, where $c_\sigma = c_{1,\sigma_1} c_{2,\sigma_2} \cdots c_{k,\sigma_k}$ for $\sigma = (\sigma_1, \cdots, \sigma_k)$.

On the other hand, for any t > s, there exists a Borel measure μ satisfying (1) by Lemma 1. Let $\mu(B(S_r(x), \frac{1}{2}b_i\varepsilon))$ be the minimum of $\{\mu(B(S_\sigma(x), \frac{1}{2}b_i\varepsilon))\}_{\sigma \in \Delta_i}$. Then for any $\sigma \in \Delta_i$, we have

$$U(S_{\sigma}(x), \varepsilon c_{\sigma}) \subset U(S_{\tau}(x), b_{i} + |I_{\tau}| + \max_{\sigma \in \Delta_{i}} (|I_{\sigma}| + \varepsilon c_{\sigma})) \subset U(S_{\tau}(x), (3 + \varepsilon)b_{i}).$$
 (3)

Using eq. (1) and the definitions of $A(U_i)$ and $D(U_i, k)$, we have

$$\begin{split} \sum_{k=k_{0}}^{\infty} \sum_{\sigma \in D(U_{i},k)} + I_{\sigma} \mid^{\beta t} & \leqslant \sum_{k=k_{0}}^{\infty} \sum_{\sigma \in D(U_{i},k)} M_{k}^{\beta t} < \sum_{k=k_{0}}^{\infty} \sum_{\sigma \in D(U_{i},k)} d_{k}^{t} \\ & < \frac{1}{\mu \left(B\left(S_{\tau}(x), \frac{1}{2}b_{i}\varepsilon\right)\right)} \sum_{k=k_{0}}^{\infty} \sum_{\sigma \in D(U_{i},k)} d_{k}^{t} \mu \left(B\left(S_{\sigma}(x), \frac{1}{2}b_{i}\varepsilon\right)\right) \\ & < \frac{c}{\mu \left(B\left(S_{\tau}(x), \frac{1}{2}b_{i}\varepsilon\right)\right)} \sum_{k=k_{0}}^{\infty} \sum_{\sigma \in D(U_{i},k)} \mu \left(B\left(S_{\sigma}(x), \frac{1}{2}\varepsilon c_{\sigma}\right)\right) \end{split}$$

$$< \frac{c}{\mu \left(B\left(S_{\tau}(x), \frac{1}{2} b_{i} \varepsilon \right) \right)} \mu \left(B\left(S_{\tau}(x), (3 + \varepsilon) b_{i} \right) \right)$$

$$< c^{2} (6 + 2\varepsilon)^{t} \varepsilon^{-t}. \tag{4}$$

Hence

$$\begin{split} \sum_{i=1}^{\infty} \sum_{\sigma \in \Delta_{-}} + I_{\sigma} \mid^{\alpha + \beta t} &= \sum_{i=1}^{\infty} \sum_{k=k_{0}}^{\infty} \sum_{\sigma \in D(U_{i}, k)} \mid I_{\sigma} \mid^{\alpha} \mid I_{\sigma} \mid^{\beta t} \\ & \leqslant \sum_{i=1}^{\infty} \sum_{k=k_{0}}^{\infty} \sum_{\sigma \in D(U_{i}, k)} \mid U_{i} \mid^{\alpha} \mid I_{\sigma} \mid^{\beta t} \\ & = \sum_{i=1}^{\infty} \Big(\sum_{k=k_{0}}^{\infty} \sum_{\sigma \in D(U_{i}, k)} \mid I_{\sigma} \mid^{\beta t} \Big) \mid U_{i} \mid^{\alpha} \\ & < c^{2} (6 + 2\varepsilon)^{t} \varepsilon^{-t} \sum_{i=1}^{\infty} \mid U_{i} \mid^{\alpha}. \end{split}$$

Noticing that $\{A(U_i)\}_{i\geqslant 1} \subset \mathscr{F}$ is a δ -covering of E, and choosing $p=c^2(6+2\varepsilon)^t\varepsilon^{-t}$, we have $\mathscr{H}^{\alpha}(E)\geqslant p\mathscr{H}^{\alpha+\beta t}_{\mathscr{F}}(E)$. Thus, the proof of Lemma 2 is completed.

Corollary 1. Let dim $_{\mathscr{F}}E$ be the Hausdorff dimension of E induced by $\mathscr{H}_{\mathscr{F}}^{a}(E)$. Then

$$\dim_{\mathcal{F}}(E) - vs \leq \dim E \leq \dim_{\mathcal{F}} E$$
.

Proof. The second part of the inequality is obvious. Now let $\dim E < \alpha$. Then $\mathscr{H}^{\alpha}(E) = 0$. From Lemma 2 it follows that

$$\dim_{\mathcal{F}} E \leq \alpha + \beta t,$$

for any $\beta > v$, and t > s. Since α , β and t are arbitrary, we have $\dim E \geqslant \dim_{\mathcal{F}} E - vs$. So the proof of Corollary 1 is completed.

Proof of Theorem 1. Using the net measure methods in ref. [3], we have $\dim_{\mathscr{F}} E = s_*$. By Corollary 1, the result of Theorem 1 can be immediately obtained. This completes the proof of Theorem 1.

Corollary 2. Let X be the (C,s)-homogeneous space, and $E \in \mathcal{M}(I, \{n_k\}, \{c_{k,j}\})$. If $\lim_{k \to \infty} \frac{\lg d_k}{\lg M_k} = 0$, then $\dim E = s_*$.

2 Proof of Theorem 2

Let $A \subseteq X$. The upper box dimension is defined by [7]

$$\Delta(A) = \limsup_{r\to 0} \frac{\lg N_r(A)}{-\lg r},$$

where $N_r(A)$ is the minimum number of closed balls of diameter r covered A. Denote by Dim (A) the packing dimension induced by the radius-based packing measure. Then^[7]

$$Dim(A) = \inf \{ \sup \Delta(A_i), A \subseteq \bigcup A_i \}.$$

Let $E \in \mathcal{M}(I, \{n_k\}, \{c_{k,i}\})$, and for any $F \subseteq E$, put

$$\begin{split} P_{\mathscr{F}}^{\alpha}(F) &= \limsup_{\delta \to 0} \biggl\{ \sum_{i} \mid A_{i} \mid^{\alpha} : \{A_{i}\} \subset \mathscr{F}, \ \mathring{A}_{i} \ \cap \ \mathring{A}_{j} \ = \ \emptyset, \\ & i \neq j, \ A_{i} \ \cap \ \widetilde{F} \neq \emptyset, \ 0 < \mid A_{i} \mid < \ \delta \biggr\}, \\ & \mathscr{P}_{\mathscr{F}}^{\alpha}(E) &= \inf \Bigl\{ \sum_{i} P_{\mathscr{F}}^{\alpha}(F_{i}) : E \subseteq \bigcup F_{i} \Bigr\}, \end{split}$$

$$\Delta_{\mathscr{F}}(E) = \inf\{\alpha: P_{\mathscr{F}}^a(E) = 0\}.$$

Lemma 3. Let X be the (C, s)-homogeneous space, $E \in \mathcal{M}(I, \{n_k\}, \{c_{k,i}\})$. Then

$$\Delta_{\mathscr{F}}(E) \leqslant \Delta(E).$$

Proof. Similar to the proof of the lemma in ref. [4], we have

$$\Delta_{\mathscr{F}}(E) = \limsup_{r \to 0} \frac{\lg M_r}{-\lg r},\tag{5}$$

where M_r is the maximum number of the sets $\{U\} \subseteq \mathscr{F}$ that are not pairwise overlap and diam $(U) \in \left(\frac{r}{2}, r\right)$.

Let N_r be the minimum number of the closed balls of diameters r covered E, and let V_1, \cdots, V_{N_r} be such closed balls. Similarly, suppose that A_1, \cdots, A_{M_r} are such sets $\{U\} \subseteq \mathscr{F}$ that are not pairwise overlap and diam $(U) \in \left(\frac{r}{2}, r\right)$. For each $A_j (j = 1, \cdots, M_r)$, there exists $\sigma = (\sigma_1, \cdots, \sigma_k) \in D_k$ such that $A_j = S_{\sigma}(I)$, and

$$\frac{r}{2} \leqslant c_{\sigma} \leqslant r$$
.

Since $I \neq \emptyset$, there exists $x \in I$ and $\varepsilon > 0$ such that $U(x, \varepsilon) \subseteq I$, and $S_{\sigma}(U(x, \varepsilon)) = U(S_{\sigma}(x), \varepsilon c_{\sigma}) \supset U(S_{\sigma}(x), \frac{r}{2}\varepsilon)$. The fact that $A_j \cap E \neq \emptyset$ implies that A_j must intersect some V_k . Let

 y_k be the centers of the closed balls V_k , $k=1,\cdots,N_r$. If A_j intersects V_k , then $A_j \subseteq B(y_k,2r)$, and

$$U(S_{\sigma}(x), \frac{\varepsilon}{2}r) \subset B(y_k, 2r).$$

Put

$$\Delta(V_k) = \{A_i : A_i \cap V_k \neq \emptyset\}.$$

If A_i , $A_j \in \Delta(V_k)$, and $i \neq j$, then there exist $\sigma \neq \tau$ such that $S_{\sigma}(I) = A_i$, $S_{\tau}(I) = A_j$. By the above argument and $\mathring{A}_i \cap \mathring{A}_i = \emptyset$, we have

$$\operatorname{dist}(S_{\sigma}(x), S_{\tau}(x)) > \frac{\varepsilon}{2}r. \tag{6}$$

Since X is (C,s)-homogeneous, the closed ball $B(y_k,2r)$ contains at most $C\left(\frac{4}{\varepsilon}\right)^s$ points with mutual distances at least $\frac{\varepsilon}{2}r$; thus

$$\# \ \Delta \left(\ V_k \right) \ \leqslant \ C \bigg(\frac{4}{\varepsilon} \bigg)^s \, .$$

Therefore

$$M_r \leqslant C \left(\frac{4}{\varepsilon}\right)^s N_r. \tag{7}$$

From eqs. (5) and (7) we have

$$\Delta_{\mathscr{F}}(E) \leqslant \Delta(E).$$

Thus, the proof of Lemma 3 is completed.

Proof of Theorem 2. Let $\alpha < s^*$; then there exists the infinite number of positive integers $k \in N$, such that $\alpha < s_k$. Thus $\sum_{\sigma \in \mathcal{D}} ||I_{\sigma}||^{\alpha} \ge ||I||^{\alpha} > 0$. By Lemma 3 we get

$$\Delta(E) \geqslant \Delta_{\mathscr{F}}(E) \geqslant s^*. \tag{8}$$

On the other hand, let $\alpha > s^*$: then there exists $k_0 > 0$ such that $s_k < \alpha$ for any $k > k_0$. For 0 < r < 1, put $Q = \{ \sigma \in D : | I_{\sigma}| \leq r < | I_{\sigma}^{\cdot}| \}$. By the proof of theorem in ref. [4], we have

$$\sum_{g \in \mathcal{Q}} |I_{\sigma}|^{\alpha} \leqslant |I|^{\alpha}. \tag{9}$$

Let k_1 and k_2 be the maximum and minimum of the lengths of elements in Q respectively, and put $d_p = \min\{d_k : k_2 \le k \le k_1\}$. From (9) we have $\operatorname{Card} Q \le (d_p r)^{-\alpha} \mid I \mid^{\alpha}$, and therefore

$$\Delta(E) \leq \limsup_{r \to 0} \frac{\lg(d_{p}r)^{-\alpha} |I|^{\alpha}}{-\lg r} = \alpha \limsup_{r \to 0} \left(1 + \frac{\lg d_{p}}{\lg r}\right)$$

$$\leq \alpha \left(1 + \limsup_{k \to 0} \frac{\lg d_{k}}{\lg M_{k-1}}\right). \tag{10}$$

From eqs. (8) and (10),

$$s^* \leq \Delta(E) \leq s^*(1+\eta).$$

By Lemma 3.3 in ref. [8] we get

$$s^* \leq \text{Dim} E \leq s^* (1 + \eta).$$

By Lemma 3.3 in ref. [8] we get

$$Dim(E) = \Delta(E)$$
;

thus

$$s^* \leq \text{Dim}(E) \leq s^*(1+\eta).$$

Corollary 3. Let X be the (C, s)-homogeneous space, and $E \in \mathcal{M}(I, \{n_k\}, \{c_{k,j}\})$. If $\lim_{k \to \infty} \frac{\lg d_k}{\lg M_{k-1}} = 0$, then $DimE = s^*$.

References

- 1 Rao, H., Wen, Z. Y., Wu, J., Net measure properties of Moran sets and applications, Chinese Science Bulletin, 1998, 43 (5): 386.
- 2 Feng, D. J., Wen, Z. Y., Wu, J., Dimensions of the homogeneous Moran sets, Science in China, Series A, 1997, 40(5): 475.
- 3 Hua, S., Dimensions for generalized Moran sets, Acta Math. Appl. Sinica 1994, 17(14): 551.
- 4 Hua, S., Li, W. X., Packing dimensions of generalized Moran sets, Progress in Natural Science (in Chinese), 1995, 5(6): 677.
- 5 Schief, A., Self-similar sets in complete metric spaces, Proc. Amer. Math. Soc., 1996, 124(2): 481.
- 6 Luukkainen, J., Saksman, E., Every complete doubling metric space carries a doubling measure, *Proc. Amer. Math. Soc.*, 1998, 126(2): 531.
- 7 Cutler, C. D., The density theorem and Hausdorff inequality for packing measure in general metric spaces, Illinois J. of Math., 1995, 39(4); 676.
- 8 Mattila, P., Measure and dimension functions: measurbility and densities, Math. Proc. Camb. Phil. Soc., 1997, 121(8):